Tutorial – How to present a calculation example

When presenting a calculation example, students should:

- Summarize the data needed to complete the calculation.
- Show all steps of the calculation.
- Present and derive all the necessary formulas.
- Always carry units.
- Keep several significant figures and only round off numbers when presenting the final result.
- Clearly highlight the final result.

Example 1 – Volume of a sphere

The diameter of a sphere was measured using a vernier caliper: $D = (26.75 \pm 0.05)$ mm. Calculate the volume of the sphere in m³.

Calculating the volume of a sphere	<u>Comments</u>
Diameter of the sphere: $D = (26.75 \pm 0.05)$ mm	We start by summarizing the data needed for this calculation.
$V = \frac{4\pi R^3}{3}$	The formula for the volume of a sphere of radius R.
$V = \frac{4\pi (D/2)^3}{3} = \frac{\pi D^3}{6} = \frac{\pi (26.75 \text{ mm})^3}{6} = 10022.3596 \text{ mm}^3$	We use the fact that the radius is half the diameter . We keep several significant figures at this stage.
$\frac{\partial V}{\partial D} = \frac{\pi D^2}{2}$	For the error propagation calculation, we need to calculate the partial derivative $\partial V / \partial D$.
$\Delta V = \sqrt{\left(\frac{\partial V}{\partial D}\right)^2 \Delta D^2} = \sqrt{\left(\frac{\pi D^2}{2}\right)^2 \Delta D^2} = \frac{\pi D^2 \Delta D}{2}$	We are using the general formula for error propagation. Again, we keep several significant figures at this stage.
$\Delta V = \frac{\pi (26.75 \text{ mm})^2 (0.05 \text{ mm})}{2} = 56.2001 \text{ mm}^3$	
$\Delta V = 6 \times 10^1 \text{ mm}^3 = 6 \times 10^{-8} \text{ m}^3$	We now round the off the uncertainty to one significant digit and do the conversion to meter cube.
$V = 1002 \times 10^1 \text{ mm}^3 = 1002 \times 10^{-8} \text{ m}^3$	We then round off the answer for the volume to the same precision and do the conversion to meter cube.
$V = (1.002 \pm 0.006) \times 10^{-5} \text{ m}^3$	We present and highlight the final answer.