Standing waves in a string

Identification page

n your
exact
this lab.
efer to the
•

Experiment title:	Standing waves in a string
Name:	
Student number.	
Lab group number:	
Course code:	РНҮ
Demonstrator:	
Date of the lab session:	
Partner's name:	
rather s hame.	

Data sheet

Instructions: This lab report is due at the end of the lab session. We recommend completing the <u>Data sheet</u> before starting the <u>Questions</u> section.

Preliminary manipulations and calculations

- [1] Measure the length *L* in meters and **estimate** the uncertainty:
 - *L* = (______ ± ____)
- [2] Measure the mass (in kg) and the length (in m) of the sample string (estimate the uncertainty for the length):

l = (______ ± ____) m = (______ ± ____)

[2] Calculate the linear density of the string (and its uncertainty) in kg/m.

[2] Using equations 1, 2 and 3, derive the formula to calculate the frequency as a function of the mode number n, the string length L, the tension T and the string linear density μ .

[1] Use your formula to predict the fundamental frequency for modes n = 2 and a suspended mass of 350g. No need for error calculations.

[4] Fill the second and fourth columns of the following table:

Hanging mass description	Total hanging mass (hanger + masses), m (kg)	Mode number, n	Calculated frequency, $f_{\rm cal}$ (s ⁻¹)	Measured frequency, $f_{ m exp}$ (s ⁻¹)
Hanger + ≈ 0.1 kg	±	2		±
		3		±
		4		±
		5		±
	±	2		±
Hanger + ≈ 0.2 kg		3		±
		4		±
		5		±
		2		±
Hanger + $\approx 0.3 \text{ kg}$	± -	3		±
	<u>+</u>	4		±
		5		±

Table 1 - Fundamental frequencies as a function of the tension in the string

Part 1 - Wavelength and frequency

the string at the node and not significantly affect the vibration?
While the string is still vibrating for $n = 2$, remove 100 g from the mass hanger. Describe and explain wh
happens then.
Part 2 - Wave speed and string density
Fill the last column of <u>Table 1</u> .
Explain how you can prepare a graph for which the slope will be the linear density, μ , of the string using data fro <u>Table 1</u> .
Prepare Graph 1. Submit it online before the end of the lab session.
What is the value of the slope in Graph 1? Provide the units.
slope = $\mu_{\text{experimental}} = ($)

Questions

Part 2 - Wave speed and string density

[2] Compare your experimental value for the string density with the calculated (theoretical) one. Calculate the percentage difference

%diff =
$$\left|\frac{\mu_{calculated} - \mu_{experimental}}{\mu_{calculated}}\right| \times 100$$
,

and discuss.

[2] What would happen to your results (graph and calculation of μ) if the string was elastic?

[2] Explain why the strings of lower tones on a guitar are thicker. Explain why notes of higher pitch are produced when the fingers are placed on the strings.

Total : _____ / 30 (for the report and graph)