Ideal Gas Law

$1^{\text {st }}$ year physics laboratories
\section*{University of Ottawa}

https://uottawa.brightspace.com/d2l/home

INTRODUCTION

- In this experiment you will investigate the relationship between pressure and several variables (temperature, volume, number of gas molecules) that affect pressure in a closed system.
- The key equation to be used is Boltzmann's equation of state:

$$
P V=n R T
$$

where \boldsymbol{P} is pressure, \boldsymbol{V} is volume, \boldsymbol{n} is number of moles, \boldsymbol{R} is the universal gas constant, and \boldsymbol{T} is the temperature

- You will also find the following information useful: One mole of gas ($\boldsymbol{n}=\mathbf{1} \mathbf{~ m o l}$) occupies the same volume $(\boldsymbol{V}=\mathbf{2 2 . 4} \mathbf{~ L})$ at standard pressure $\left(\boldsymbol{P}=1.013 \times \mathbf{1 0}^{\mathbf{5}} \mathbf{~ P a}\right)$ and standard temperature ($\left.\boldsymbol{T}_{\mathbf{0}}=273.15 \mathrm{~K}=0^{\circ} \mathrm{C}\right)$.

OBJECTIVES

- Collect data for a sample of air in a closed system:

1) pressure vs. volume
2) pressure vs. number of moles
3) pressure vs. temperature

- Determine the relationships between these variables and then formulate a single expression relating these variables.
- Determine whether air behaves as an ideal gas.
- Determine the absolute zero temperature.

SAFETY WARNING!!

- You will be working with near boiling water in this experiment.
- Please wear protective gloves when handling any high temperature surfaces.
- Please turn off the hot plate when it is not in use.
- If the water begins to boil before your collection time is up, turn off the hot plate.

P vs. T

- Fill the beaker to the 350 mL mark.
- Your initial values should be around:
$T \approx 22^{\circ} \mathrm{C}$,
$P \approx 100 \mathrm{kPa}$.
- Reduce the pressure to between 50 and 60 kPa before you start. PHOTOS AND VIDEO ON NEXT TWO SLIDES.

The setup

 for P vs. T

Decreasing the initial pressure

$\underline{P \text { vs. } T \text { (cont.) }}$

- Set data collection to 600 s .
- Turn the hot plate to maximum and wait until the temperature has increased by $5^{\circ} \mathrm{C}$ before pressing collect.
- Make sure to stop data collection if your water begins to boil before the 600 s is finished.
- Prepare your graph of pressure vs. temperature.
- Attach the 20 mL syringe directly to the pressure sensor.

- Use "Events with Entry" mode for data collection and make sure you use a 10 s average.
- Record the pressure at each step as you change the volume from 10 to 20 mL by steps of 2 mL . Repeat for 20 to 10 mL .
- Prepare your graph of pressure vs. inverse volume.

The setup for P vs. $1 / V$ and P vs. n

$\underline{P \text { vs. } n}$

- This part uses the same setup as part 2 (pressure and volume).
- NB: 1 puff = $\mathbf{3} \mathbf{~ m L}$
- Disconnect the syringe and position the piston so $V=1$ puff. Reconnect the syringe and adjust the volume to 10 mL . Record the pressure.
- Increase the number of puffs by 1 and repeat the measurement until you hit a total of 6 puffs. Remember you are adjusting the pressure to a constant 10 mL each time you re-connect the syringe.
- Prepare your graph of pressure vs. \# puffs.

GRAPHS

- There are three graphs to create and submit for this lab. Use the "Uploading graphs" tool at the bottom of the experiment page in Brightspace.

```
:! Exp. 2-Uploading graphs
    目 Assignment
    (4) Due February 17 at 6:00 PM Starts Feb 6, 2023 12:01 AM Ends Feb 17, 2023 6:00 PM
WARNING: DO NOT OPEN THIS ASSIGNMENT UNTIL YOU ARE READY TO SUBMIT YOUR
GRAPHS DURING YOUR LAB SESSION!
Please upload the three graphs associated with Exp. 2 in this submission folder.
Your graphs must be in PDF format or else they will not be marked and you will receive a score of zero for this section.
You may only make one submission so please ensure that your graphs are to your satisfaction before submitting.
- PDF format with correct file name, landscape, title shown, axes labeled, etc...
```


CLEAN UP

- Turn off the computer and don't forget to take your USB key.
- Make sure the hot plate is turned off and unplugged.
- Leave the water in the beaker for the next students.
- Re-connect the pressure sensor to the flask assembly like it was at the beginning of the lab session.
- Please recycle scrap paper and throw away any garbage. Please leave your station as clean as you can.
- Push back the monitor, keyboard, and mouse. Please push your chair back under the table.
- Thank you!

DUE DATE

The report is due at the end of the lab session, i.e., at 12:50pm or 5:20pm.

PRE-LAB

Don't forget to do your pre-lab for the next experiment!

