

Geometrical Optics

$1^{\text {st }}$ year physics laboratories

University of Ottawa

https://uottawa.brightspace.com/d2l/home

INTRODUCTION

- Geometrical optics deals with light as a ray that can be bounced (reflected) or bent (refracted) by different mechanisms.
- Refraction is the bending of light when it goes from one medium to another if the two media have different refractive indices.
- Dispersion (index of refraction depends on wavelength) is demonstrated by the spatial separation of light into the different colours that it is composed of.
- Lenses can be used to focus (converge) or defocus (diverge) light rays.
- Simple optical devices, such as a microscope, can be fabricated using optical components as simple as a pair of lenses.

REFRACTION

- When light crosses the interface between two media having different refractive indices (ie. between air and water), a light ray will change its direction of travel.
- Snell's law tells us the amount the light will bend and depends on the angle of incidence $\left(\theta_{1}\right)$, the refractive index of the first material $\left(n_{1}\right)$, and the refractive index of the
 second material $\left(n_{2}\right)$.

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

DISPERSION

- The index of refraction for light varies with the wavelength (colour) of the light. The index is lower for longer wavelengths and higher for shorter wavelengths.
- White light is made up of a spectrum of different colours and when it enters a material at an angle, each colour will spatially separate because it will bend by a slightly different amount.
- When we send white light through a prism, the double bending in the same direction will cause enough spatial separation of colours so that you'll see a rainbow pattern.

LENSES

- A lens can be used to converge or diverge light that is incident on its surface.
- We can use the thin lens equation to connect the object (p) and image (q) distances with the focal length (f) of the lens:

$$
\frac{1}{p}+\frac{1}{q}=\frac{1}{f}
$$

RAY DIAGRAMS

Converging lens

- We can construct ray diagrams using three simple rules.
- F_{1} and F_{2} are the focal points.

REFRACTION

- Use a single beam from the laser ray box to demonstrate reflection and refraction of light.

REFRACTION OF LIGHT

- You will use Snell's law the experimentally determine the index of refraction of a piece of acrylic.
- Method 1 by calculation (see previous slide).
- Method 2 by making a graph of incident angle $v s$. refracted angle (setup shown to the right).

DISPERSION SETUP

- Investigate the dispersion of white light as you shoot it through a prism.
- Which colour has the largest refraction angle?

FOCUSING LENS SETUP

- You can directly measure the focal length of the double concave and double convex acrylic lenses using three beams from the laser ray box.

FOCUSING AN

OBJECT AT INFINITY

- A very distant object ($p \rightarrow \infty$) will have a real image at the focal point of a converging lens $(q \approx f)$.

OBJECT CLOSER THAN INFINITY

- Record a series of p and q measurements and graphically determine the focal length of the lens.

MICROSCOPE SETUP

- Use two lenses to assemble a microscope to magnify an image.
- Determine the magnification, M.

CLEAN UP

- Turn off the computer and don't forget to take your USB key.
- Make sure the laser ray box is turned off. Put back the 4 acrylic pieces and the 360° protractor.
- Make sure the white light source is turned off. Put the light source, the two lenses, and the screen back on the optical track.
- Please recycle scrap paper and throw away any garbage. Please leave your station as clean as you can.
- Push back the monitor, keyboard, and mouse. Please push your chair back under the table.

DUE DATE

The report is due at the end of the lab session.

PRE-LAB

Don't forget to do your pre-lab for the next experiment!

- Thank you!

