Electric circuits (3h)

Identification page

Instructions: Print this page and the following ones before your lab session to prepare your lab report. Staple them together with your graphs at the end. If you forgot to print it before your lab, you can reproduce it by hand but you have to follow the exact format (same number of pages, same items on each page, same space to answer question).

Complete all the identification fields below or 10% of the lab value will be deduced from your final mark for this lab.

For in-lab reports, hand in your report to your demonstrator at the end of the sessions or you will receive a zero for this lab.

For take-home reports, drop your report in the right box or 10% of the lab value will be deduced from your mark. Refer to the General information document for the details of the late report policy.

Experiment title: Electric circuits (3h)

Name: \qquad
Student number:

Lab group number: \qquad

Course code: PHY

Demonstrator: \qquad

Date of the lab session: \qquad

Partner's name: \qquad

Data sheet

Instructions: Use a pen to complete this section before the end of the lab session. Ask your TA to initial your data before you leave the laboratory.

Part 1 - Measuring a resistance value
[3] Complete the following table:
Table 1 - Resistance values

	Color code	Coded resistance value (Ω)	Coded tolerance $(\%)$	Coded tolerance (Ω)	Multimeter resistance value $(\mathbf{k} \Omega)$	Multimeter absolute error ($\pm \mathbf{1 \%})$ $(\mathbf{k} \Omega)$
R_{1}	Are both values within tolerance? $($ yes or no)					
R_{2}	yellow-violet- brown-gold	470	5	23.5		
R_{3}brown-black- red-gold						
orange-orange- red-gold						

Part 2 - Ohm's law

[3] Complete the following table (no need for uncertainties):

Table 2 - Voltage vs. current to verify Ohm's law

Suggested power supply voltage (V)	Measured voltage at the resistor (V)	Current going through the resistor (mA)
0.25		
0.50		
0.75		
1.00		
1.25		
1.50		
1.75		
2.00		

[4] Prepare Graph 1. Print it to a pdf file. Submit it online before the end of the lab session.
[1] What are the values of m (slope) and b (Y-intercept) in Graph 1? Provide the units.

$$
m=(\ldots \ldots) \quad b=(\ldots \ldots
$$

Part 3 - Combination of resistors
[3] Using the ohmmeter, fill the following table (no need for uncertainties):
Table 3 - Effective resistance for resistors in series

Resistors in series	Measured resistance value $\mathbf{(k \Omega} \mathbf{)}$
$R_{1}-R_{2}$	
$R_{1}-R_{3}$	
$R_{2}-R_{3}$	
$R_{1}-R_{2}-R_{3}$	

[3] Using the ohmmeter, fill the following table (no need for uncertainties):
Table 4 - Effective resistance for resistors in parallel

Resistors in parallel	Measured resistance value $\mathbf{(k \Omega} \mathbf{)}$
$R_{1} / / R_{2}$	
$R_{1} / / R_{3}$	
$R_{2} / / R_{3}$	
$R_{1} / / R_{2} / / R_{3}$	

[1] Using the ohmmeter, what is the effective resistance value of the mixed circuit $R_{1}-\left(R_{2} / / R_{3}\right)$. Use an uncertainty of $\pm 1 \%$.

$$
R_{\text {effective }}=(\square)
$$

Part 4 - Voltages and currents in circuits (Kirchhoff's rules)
[3] Measure the voltage drops and the currents at each resistor in the mixed circuit. Provide the units. (no need for uncertainties).

$$
\begin{array}{ll}
\Delta V_{0}=\square & I_{1}=\square \\
\Delta V_{1}=\square \\
\Delta V_{2 / / 3}=\square & I_{2}=\square \\
\hline
\end{array}
$$

Part 5 - Combinations of capacitors
[3] Using the Fluke multimeter, fill the following table (no need for uncertainties):
Table 5 - Effective capacitances for capacitors in series and in parallel

Capacitors	Measured capacitance value (nF)
C_{1}	
C_{2}	
$C_{1}-C_{2}$ (in series)	
$C_{1} / / C_{2}$ (in parallel)	

Questions

Part 1 - Measuring a resistance value
[2] How did you determine if the coded and measured values of a resistor were within tolerance of each other?
\qquad
\qquad
\qquad
\qquad

Part 2 - Ohm's law
[1] What is the physical meaning of the slope in Graph 1? Did you get the expected value?
\qquad
\qquad
\qquad
\qquad

Part 3 - Combination of resistors
[2] Your data from Table 3 should show that the rule for combining resistors in series is simple:

$$
R_{e f f}=R_{1}+R_{2}+\cdots
$$

Based on your data from Table 4, what is the apparent rule (or equation) for combining resistors in parallel?
Verify that the rule is valid for $R_{2} / / R_{3}$ by using your R values from Table 1 for the calculation and compare with your measured value from Table 4. No uncertainty calculation needed.

[2] Using your value for R_{1} from Table 1 and the result of the previous question, calculate the effective resistance value of the mixed circuit $R_{1}-\left(R_{2} / / R_{3}\right)$. Does your measured value correspond to your calculated value for the effective resistance? No uncertainty calculation needed.
\square

Part 4 - Voltages and currents in circuits (Kirchhoff's rules)
[2] Based on your measurements for current, apply the junction rule in your circuit at node c. Is the junction rule valid? (Hint: see eq. 2). No uncertainty calculation needed.
\square
[1] Based on your measurements for $\Delta V_{2 / / 3}$ and I_{2}, verify whether the Ohm's law equation (see eq. 1) is valid for R_{2} in the mixed circuit. No uncertainty calculation needed.
\square
[2] Based on your measurements for current and your data from Table 1, apply the loop rule in your circuit for the small loop that passes through R_{2} and R_{3} (see eq. 4). Is the loop rule valid? No uncertainty calculation needed.

Part 5 - Combinations of capacitors
[2] Based on your data from Table 5, what are the apparent rules (or equations) for combining capacitors in series and parallel? How do these differ from the rules for resistors?

Total : \qquad / 38
(Total including graph)

