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Learning Goals

e How to relate p, V, and T of a gas.

e How p and T are related to kinetic energy of molecules.

e Looking at heat capacities of a gas and what it reveals (microscopic picture)

e *Distribution of molecular speeds (some statistics).
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Background

Introduction

e In Ch. 18, we examine how change in temperature affects matter. We
relate thermal properties from macroscopic to microscopic scale.

e Think about water vapor (or steam) in your kitchen.
- Kettle boils water.
— Microwave a potato.

— Condensation on a
glass.

— Ice forming in a
freezer.
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Section 18.1

Equations of state

e Quantities like pressure, volume, temperature, and amount of a substance
are state variables because they describe the state of the substance.

e It's possible to describe the relationship between these variables using an
equation of state.

— If the relationship is too complicated, we must use graphs or tables.

e Eg. An approximate equation of state for a solid:
V=V,(1+pB AT — k Ap)
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Section 18.1

The Ideal-gas equation (law)

Temperature (7")

e The ideal-gas equation is another equation of state: i

e

heat the gas
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Ideal gas (cont.)

e We can express pV = nRT in other useful ways.

e In terms of mass of the gas and molar mass:

and from this equation we get an expression for density p:
_ Mtotal _ @

e For a constant mass (or n) of an ideal gas, pV/T is constant:
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Section 18.1

Ex. 18.1 — Volume of an Ideal Gas

1 atm =101.3 kPa = 14.7 psi

e At standard temperature and pressure (STP):
7 nRT (1 mol)(8.314 J/mol - K)(273.15 K)

p 1.013 x 105 Pa

= 0.0224 m3 =224 L

Ex. 18.3 — Mass of Air in a Scuba Tank

e An “empty” aluminum scuba tank contains 11.0 L of air at 21.0°C and 1 atm.

When the tank is filled rapidly from a compressor, the air temperature is 42°C
and the gauge pressure is 2.10 x 107 Pa.

What mass of air was added? Air is about 78% N, 21% 0O,, and 1%
miscellaneous; it has M,, = 28.8-% = 28.8 x 1073 2,

mol mol
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Gauge or absolute pressure
o Ideal gas law uses the absolute pressure.

e The gauge pressure is the difference between the absolute
pressure and atmospheric pressure in a sealed container.

e Example: Flat tire has 1 atm pressure inside. Inflated tire

has ~3 atm of pressure inside. Gauge pressure is (3-1=2 atm).

e Example: "empty” scuba tank has 1 atm pressure. Filled scuba
tank has ~200 atm of pressure inside.

pV = nRT

PHY 1122 - Fundamentals of Physics 11
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The van der Waals equation*

e The ideal gas equation ignores volumes of
molecules and attractive forces between them
(figure (a) below).

e The van der Waals equation is more realistic:

an?
(p + W) (V —nb) = nRT

where a and b are different constants for
different gases.
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(a) An idealized model of a gas
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4+ Gas molecules are

infinitely small.

|- They exert forces
on the walls of the
container but not

on each other.

(b) A more realistic model of a gas

s
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o
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.-Gas molecules have

volume, which reduces
the volume in which
they can move.

1-- They exert attractive

forces on each other,
which reduces the
pressure ...

... and they exert forces on the container’s walls.
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Section 18.2

Molecules and intermolecular forces

o We'll now look at how molecular structure influences “bulk” behavior (density,
heat capacities, equations of state, etc...)

e All chemical compounds are made of identical molecules which in turn are
composed of atoms (~10-19 m in size).

e In solids and liquids, molecules are held together by intermolecular forces. In

gases, they move nearly independently.
r = separation between
molecules .

e The force between molecules depends on the | al
distance r between them.

~_

: Molecules
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Molecular properties of matter

e In solid form, molecules move by vibrating about some
fixed points within
their lattices. (eg. NaCl - table salt).

e They can also make some interesting geometries like the

diamond-cubic lattice of silicon (looks hexagonal at angle).

e In liquids, intermolecular distances are slightly larger than
solid phase of same substance.

- But with greater freedom of movement.

e In gas, molecules move independently.
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Chloride
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Section 18.3

Kinetic-molecular model of an ideal gas

e Using molecular structure (microscopic) to describe macroscopic properties of
matter (volume, temp., etc...) for an ideal gas.

e This model is based on a large # of particles bouncing around in a closed
container (separate document will be posted showing the derivation).

e Using the model we can determine:
- Total translational kinetic energy of a set of molecules (or atoms).
- Average trans. Kinetic energy of a single molecule.
- Modified formula for the ideal gas law based on number of molecules.
- The root-mean-square (rms) speed of a molecule.
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Section 18.3

Pressure, temperature, and molecular KE

e The total translational kinetic energy of a set of atoms or molecules:
3

3
Ker = 5 nRT <= Epv>

e The average K, of a single molecule also depends only on temperature:

K, |[1 3
—Nr = Em(vz)avg = EkT
where |k = 2| = 1.381 x 1023 J is known as the Boltzmann constant.
Ny molecule-K

e The ideal gas equation can also now be written as:
pV = NkT
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Section 18.3

Molecular speeds

e The root-mean-square speed of a single molecule is given by:
3kT 3RT
Urms| = /(Uz)avg — m or = M

e This represents the speed of a molecule that has an average value of
translational kinetic energy in your system.

— Slightly different (higher) than the average speed of any given molecule.

e Lighter molecules (like hydrogen) have faster v, and can escape into space.

Heavier molecules (nitrogen and oxygen) are slower which is why our air is
mostly N, and O, gas.
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Section 18.3

Ex. 18.6 — Molecular kinetic energy and v .

e (a) What is the average translational kinetic energy of an ideal gas molecule at 27°C?

1 3
im(vz)avg = EkT =16.21 x 10721 ]

(b) What is the total random translational kinetic energy of the molecules in 1 mole
of this gas?

3
Ku| = 5nRT = [3740]

(c) What is the rms speed of oxygen molecules at this temperature?

3kT 3RT
Vrms | = 7= 7= 484m/s
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Section 18.3

Ex. 18.7 - Calculating rms and average speeds
e Five gas molecules have speeds of 500, 600, 700, 800, and 900 m/s.

— What is the rms speed?
— What is the average speed?

» 5002 4+ 6002 4+ 7002 + 8002 + 9002
Urms| = /(v Javg = : =[714 m/s

500 + 600 + 700 + 800 + 900
Vavg| = c =700 m/s

In general, v,s and v,z are not the same. Roughly speaking, v, gives greater weight
to the higher speeds than v,,.
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Section 18.4

Heat capacities of gases

o Before, we introduced heat capacities as a way to measure energy transfer.
— We can predict values of it based on kinetic-molecular theory.

e Heat is energy in transit: add heat, increase energy!

e If volume doesn’t change, we can predict C, (in ﬁ) which is the molar heat
capacity at constant volume.

- |Cy = Mcy| where ¢y, (in 1{;7) is specific heat capacity.

PHY 1122 - Fundamentals of Physics 11
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Section 18.4
-y = (a) (]
Heat capacities of gases
I
e Trans. kin. energy and heat depend on temperature: x
3
K = EnRT ) Q =nCyT K. )
o/
14

e If temp. changes by dT then energy changes by dK;,.
— The heat also changes by dQ « dT.
(b) i

e Let’s assume K,, is total molecular energy, then dK,,
and dQ are equal:

3
thT‘ — ETLR dT
3 do
Cv =5 R|= 1247 ]/mol - K
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Section 18.4

Heat capacities of gases

: _ ]
e This value of |C, = 12.47 —

like He (~12.46) and Ar (~12.46).
— But diatomic gases like H,, N,, and O, have ¢, = ~20.4 — 20.8 L

mol-K

predicts correctly for the monatomic gases

e The reason is that diatomic gases have more degrees of freedom than
monatomic. Diatomic gases have two possible rotational axes.
The total kinetic energy per molecule is:

5
Kiriror = = kT

2
5 . .
Cy = ER (for diatomic gas)
J
Cy = 20.79
v mol - K
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Heat capacities of (monatomic) solids

Section 18.4

e For monatomic solids, atoms are bound to each other by interatomic forces.

C
e Each atom has translational and vibrational f o
kinetic energy and also has elastic potential TR/2 Dulong and Peticpredietion
Lead Aluminum
hergy: S B s et Silicon
5R/2
e The molar heat capaC|ty at constant volume Diamond
: — _ 2R
is:[C, = 3R] =249 lK
3R/2
e Rule of Dulong and Petit (introduced in Ch. 17). ol
R/2
| | | | T(K)

0|
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Section 18.4 !

Heat capacities and temperature

e Heat capacities also tend to vary with temperature.
- Examples: H, gas (left) and water (right).

C Below 50 K, H, Appreciable Appreciable
V' molecules undergo  rotational motion vibrational motion
4R | translation but do begins to occur  begins to occur
not rotate or vibrate. above 50 K. above 600 K. c (J /kg . K)
TR/2 - S TR/2
i & E /
3R |- % ’Vibration 4220
5R/2 |- ————Jl—— 5R/2 4210
4200
2R - _ Rotation 4190
3R/2f === A S 3R/2 4180 -
R |
Translation 4170
R/2 - S
1 | l ! | | | | T (K) : I I l I T (°C)
0 25 50 100 250 500 1000 2500 5000 10,000 0 20 40 60 80 100
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Section 18.5

Statistics of molecular speeds*
e Molecules in a gas don't all have the same speeds.

e A function f(v) is called a probability distribution function.

- In terms of speeds, f(v) would give the £(v)
probability of a molecule to have a speed
within an interval.

T, i e e

T,

T
e The peak of the curve represents the most :

probably speed v,,,.

— As T increases, the peak shifts to O
higher v,,,.

As temperature increases:
e the curve flattens.
e the maximum shifts to higher speeds.
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